Sensor Models — Key Ingredient for Sensor Fusion in Automated Driving

Sensor Fusion > Sensor Models — Key Ingredient for Sensor Fusion in Automated Driving

In automated driving, the term sensor model is typically used when it comes to the simulation of sensors, e.g. as part of a validation chain. While sensor models are a major aspect of simulation, they are equally important for the performance of the environmental model and its contained sensor fusion. Scalable sensor fusion architectures allow easy exchange of sensor models so that tested components can be reused and more development resources can be spent in sensor modeling.

What is a Sensor Model?

While the detectability part of a sensor model describes if a sensor can detect an object, the appearance model describes how a sensor perceives an object. For an example radar sensor, an object could “appear” to the sensor in the form of three values distance, azimuth angle, and Doppler velocity. From this example we can see that the appearance model includes sensor limitations, e.g. a radar can observe the radial part of the object’s velocity (the Doppler velocity) only and if an object is crossing the observed Doppler velocity contains a fraction of the actual object velocity only. Additionally, the appearance or measurement model typically describes the errors in the observed quantities, e.g. a radar may observe the object’s distance with ±1m accuracy. Similar to the detection characteristic, the appearance characteristic may depend on the object itself, e.g. the distance accuracy could be better for cars than for trucks, or it could depend on environment and/or host vehicle conditions.

How Sensor Models Influence Sensor Fusion Architectures

Requirements of a Scalable Sensor Fusion Architecture

Modifications in the architecture of the sensor fusion can compensate for this limitation up to some extend, however, these architecture modifications are model-specific and often require deep modifications of the overall algorithm and code. Especially when it comes to production usage and automotive development processes and regulations like ISO 26262, these modifications become cost and time intensive if applied manually in each and every project.


Top of page